3.1.2 \(\int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx\) [2]

3.1.2.1 Optimal result
3.1.2.2 Mathematica [C] (verified)
3.1.2.3 Rubi [A] (verified)
3.1.2.4 Maple [B] (warning: unable to verify)
3.1.2.5 Fricas [B] (verification not implemented)
3.1.2.6 Sympy [F]
3.1.2.7 Maxima [F]
3.1.2.8 Giac [F(-2)]
3.1.2.9 Mupad [F(-1)]

3.1.2.1 Optimal result

Integrand size = 33, antiderivative size = 384 \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx=\frac {\sqrt {a-c-\sqrt {a^2+b^2-2 a c+c^2}} \text {arctanh}\left (\frac {a-c-\sqrt {a^2+b^2-2 a c+c^2}+b \cot (d+e x)}{\sqrt {2} \sqrt {a-c-\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2+b^2-2 a c+c^2} e}-\frac {\sqrt {a-c+\sqrt {a^2+b^2-2 a c+c^2}} \text {arctanh}\left (\frac {a-c+\sqrt {a^2+b^2-2 a c+c^2}+b \cot (d+e x)}{\sqrt {2} \sqrt {a-c+\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2+b^2-2 a c+c^2} e}+\frac {b \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 c^{3/2} e}-\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{c e} \]

output
1/2*b*arctanh(1/2*(b+2*c*cot(e*x+d))/c^(1/2)/(a+b*cot(e*x+d)+c*cot(e*x+d)^ 
2)^(1/2))/c^(3/2)/e-(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2)/c/e+1/2*arctanh( 
1/2*(a-c+b*cot(e*x+d)-(a^2-2*a*c+b^2+c^2)^(1/2))*2^(1/2)/(a+b*cot(e*x+d)+c 
*cot(e*x+d)^2)^(1/2)/(a-c-(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2))*(a-c-(a^2-2*a* 
c+b^2+c^2)^(1/2))^(1/2)/e*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/2)-1/2*arctanh(1/ 
2*(a-c+b*cot(e*x+d)+(a^2-2*a*c+b^2+c^2)^(1/2))*2^(1/2)/(a+b*cot(e*x+d)+c*c 
ot(e*x+d)^2)^(1/2)/(a-c+(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2))*(a-c+(a^2-2*a*c+ 
b^2+c^2)^(1/2))^(1/2)/e*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/2)
 
3.1.2.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.84 (sec) , antiderivative size = 397, normalized size of antiderivative = 1.03 \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx=\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)} \tan (d+e x) \left (b \sqrt {a-i b-c} \sqrt {a+i b-c} \text {arctanh}\left (\frac {2 c+b \tan (d+e x)}{2 \sqrt {c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )+i \sqrt {c} \left (\sqrt {a-i b-c} c \arctan \left (\frac {i b-2 c+(2 i a-b) \tan (d+e x)}{2 \sqrt {a+i b-c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )+\sqrt {a+i b-c} \left (c \arctan \left (\frac {i b+2 c+(2 i a+b) \tan (d+e x)}{2 \sqrt {a-i b-c} \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}}\right )+2 i \sqrt {a-i b-c} \cot (d+e x) \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}\right )\right )\right )}{2 \sqrt {a-i b-c} \sqrt {a+i b-c} c^{3/2} e \sqrt {c+b \tan (d+e x)+a \tan ^2(d+e x)}} \]

input
Integrate[Cot[d + e*x]^3/Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]
 
output
(Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2]*Tan[d + e*x]*(b*Sqrt[a - I*b 
- c]*Sqrt[a + I*b - c]*ArcTanh[(2*c + b*Tan[d + e*x])/(2*Sqrt[c]*Sqrt[c + 
b*Tan[d + e*x] + a*Tan[d + e*x]^2])] + I*Sqrt[c]*(Sqrt[a - I*b - c]*c*ArcT 
an[(I*b - 2*c + ((2*I)*a - b)*Tan[d + e*x])/(2*Sqrt[a + I*b - c]*Sqrt[c + 
b*Tan[d + e*x] + a*Tan[d + e*x]^2])] + Sqrt[a + I*b - c]*(c*ArcTan[(I*b + 
2*c + ((2*I)*a + b)*Tan[d + e*x])/(2*Sqrt[a - I*b - c]*Sqrt[c + b*Tan[d + 
e*x] + a*Tan[d + e*x]^2])] + (2*I)*Sqrt[a - I*b - c]*Cot[d + e*x]*Sqrt[c + 
 b*Tan[d + e*x] + a*Tan[d + e*x]^2]))))/(2*Sqrt[a - I*b - c]*Sqrt[a + I*b 
- c]*c^(3/2)*e*Sqrt[c + b*Tan[d + e*x] + a*Tan[d + e*x]^2])
 
3.1.2.3 Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 376, normalized size of antiderivative = 0.98, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {3042, 4184, 7276, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (d+e x)^3}{\sqrt {a+b \cot (d+e x)+c \cot (d+e x)^2}}dx\)

\(\Big \downarrow \) 4184

\(\displaystyle -\frac {\int \frac {\cot ^3(d+e x)}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 7276

\(\displaystyle -\frac {\int \left (\frac {\cot (d+e x)}{\sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}-\frac {\cot (d+e x)}{\left (\cot ^2(d+e x)+1\right ) \sqrt {c \cot ^2(d+e x)+b \cot (d+e x)+a}}\right )d\cot (d+e x)}{e}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {-\frac {\sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+a-c} \text {arctanh}\left (\frac {-\sqrt {a^2-2 a c+b^2+c^2}+a+b \cot (d+e x)-c}{\sqrt {2} \sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+a-c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2-2 a c+b^2+c^2}}+\frac {\sqrt {\sqrt {a^2-2 a c+b^2+c^2}+a-c} \text {arctanh}\left (\frac {\sqrt {a^2-2 a c+b^2+c^2}+a+b \cot (d+e x)-c}{\sqrt {2} \sqrt {\sqrt {a^2-2 a c+b^2+c^2}+a-c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2-2 a c+b^2+c^2}}-\frac {b \text {arctanh}\left (\frac {b+2 c \cot (d+e x)}{2 \sqrt {c} \sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}\right )}{2 c^{3/2}}+\frac {\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}}{c}}{e}\)

input
Int[Cot[d + e*x]^3/Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2],x]
 
output
-((-((Sqrt[a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*ArcTanh[(a - c - Sqrt[a^ 
2 + b^2 - 2*a*c + c^2] + b*Cot[d + e*x])/(Sqrt[2]*Sqrt[a - c - Sqrt[a^2 + 
b^2 - 2*a*c + c^2]]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2])])/(Sqrt[2 
]*Sqrt[a^2 + b^2 - 2*a*c + c^2])) + (Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + 
 c^2]]*ArcTanh[(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2] + b*Cot[d + e*x])/(S 
qrt[2]*Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Cot[d + e*x] 
 + c*Cot[d + e*x]^2])])/(Sqrt[2]*Sqrt[a^2 + b^2 - 2*a*c + c^2]) - (b*ArcTa 
nh[(b + 2*c*Cot[d + e*x])/(2*Sqrt[c]*Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e 
*x]^2])])/(2*c^(3/2)) + Sqrt[a + b*Cot[d + e*x] + c*Cot[d + e*x]^2]/c)/e)
 

3.1.2.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4184
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*( 
f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] 
 :> Simp[-f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), 
x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[ 
n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 

rule 7276
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionE 
xpand[u/(a + b*x^n), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ 
[n, 0]
 
3.1.2.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 1.74 (sec) , antiderivative size = 9581108, normalized size of antiderivative = 24950.80

\[\text {output too large to display}\]

input
int(cot(e*x+d)^3/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x)
 
output
result too large to display
 
3.1.2.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 11834 vs. \(2 (339) = 678\).

Time = 5.73 (sec) , antiderivative size = 23719, normalized size of antiderivative = 61.77 \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx=\text {Too large to display} \]

input
integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm= 
"fricas")
 
output
Too large to include
 
3.1.2.6 Sympy [F]

\[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx=\int \frac {\cot ^{3}{\left (d + e x \right )}}{\sqrt {a + b \cot {\left (d + e x \right )} + c \cot ^{2}{\left (d + e x \right )}}}\, dx \]

input
integrate(cot(e*x+d)**3/(a+b*cot(e*x+d)+c*cot(e*x+d)**2)**(1/2),x)
 
output
Integral(cot(d + e*x)**3/sqrt(a + b*cot(d + e*x) + c*cot(d + e*x)**2), x)
 
3.1.2.7 Maxima [F]

\[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx=\int { \frac {\cot \left (e x + d\right )^{3}}{\sqrt {c \cot \left (e x + d\right )^{2} + b \cot \left (e x + d\right ) + a}} \,d x } \]

input
integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm= 
"maxima")
 
output
integrate(cot(e*x + d)^3/sqrt(c*cot(e*x + d)^2 + b*cot(e*x + d) + a), x)
 
3.1.2.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(e*x+d)^3/(a+b*cot(e*x+d)+c*cot(e*x+d)^2)^(1/2),x, algorithm= 
"giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Not invertible Error: Bad Argument 
Value
 
3.1.2.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^3(d+e x)}{\sqrt {a+b \cot (d+e x)+c \cot ^2(d+e x)}} \, dx=\int \frac {{\mathrm {cot}\left (d+e\,x\right )}^3}{\sqrt {c\,{\mathrm {cot}\left (d+e\,x\right )}^2+b\,\mathrm {cot}\left (d+e\,x\right )+a}} \,d x \]

input
int(cot(d + e*x)^3/(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2),x)
 
output
int(cot(d + e*x)^3/(a + b*cot(d + e*x) + c*cot(d + e*x)^2)^(1/2), x)